98 research outputs found

    Biological effects of naturally occurring and man-made fibres: in vitro cytotoxicity and mutagenesis in mammalian cells

    Get PDF
    Cytotoxicity and mutagenicity of tremolite, erionite and the man-made ceramic (RCF-1) fibre were studied using the human– hamster hybrid A L cells. Results from these fibres were compared with those of UICC Rhodesian chrysotile fibres. The A L cell mutation assay, based on the S1 gene marker located on human chromosome 11, the only human chromosome contained in the hybrid cell, has been shown to be more sensitive than conventional assays in detecting deletion mutations. Tremolite, erionite and RCF-1 fibres were significantly less cytotoxic to A L cells than chrysotile. Mutagenesis studies at the HPRT locus revealed no significant mutant yield with any of these fibres. In contrast, both erionite and tremolite induced dose-dependent S1− mutations in fibre-exposed cells, with the former inducing a significantly higher mutant yield than the latter fibre type. On the other hand, RCF-1 fibres were largely non-mutagenic. At equitoxic doses (cell survival at ∼ 0.7), erionite was found to be the most potent mutagen among the three fibres tested and at a level comparable to that of chrysotile fibres. These results indicate that RCF-1 fibres are non-genotoxic under the conditions used in the studies and suggest that the high mesothelioma incidence previously observed in hamster may either be a result of selective sensitivity of hamster pleura to fibre-induced chronic irritation or as a result of prolonged fibre treatment. Furthermore, the relatively high mutagenic potential for erionite is consistent with its documented carcinogenicity. © 1999 Cancer Research Campaig

    New Insight into Intrachromosomal Deletions Induced by Chrysotile in the gpt delta Transgenic Mutation Assay

    Get PDF
    BACKGROUND: Genotoxicity is often a prerequisite to the development of malignancy. Considerable evidence has shown that exposure to asbestos fibers results in the generation of chromosomal aberrations and multilocus mutations using various in vitro approaches. However, there is less evidence to demonstrate the contribution of deletions to the mutagenicity of asbestos fibers in vivo. OBJECTIVES: In the present study, we investigated the mutant fractions and the patterns induced by chrysotile fibers in gpt delta transgenic mouse primary embryo fibroblasts (MEFs) and compared the results obtained with hydrogen peroxide (H(2)O(2)) in an attempt to illustrate the role of oxyradicals in fiber mutagenesis. RESULTS: Chrysotile fibers induced a dose-dependent increase in mutation yield at the redBA/gam loci in transgenic MEF cells. The number of λ mutants losing both redBA and gam loci induced by chrysotiles at a dose of 1 μg/cm(2) increased by > 5-fold relative to nontreated controls (p < 0.005). Mutation spectra analyses showed that the ratio of λ mutants losing the redBA/gam region induced by chrysotiles was similar to those induced by equitoxic doses of H(2)O(2). Moreover, treatment with catalase abrogated the accumulation of γ-H2AX, a biomarker of DNA double-strand breaks, induced by chrysotile fibers. CONCLUSIONS: Our results provide novel information on the frequencies and types of mutations induced by asbestos fibers in the gpt delta transgenic mouse mutagenic assay, which shows great promise for evaluating fiber/particle mutagenicity in vivo

    Regulation of early signaling and gene expression in the α-particle and bystander response of IMR-90 human fibroblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The existence of a radiation bystander effect, in which non-irradiated cells respond to signals from irradiated cells, is well established. To understand early signaling and gene regulation in bystander cells, we used a bio-informatics approach, measuring global gene expression at 30 minutes and signaling pathways between 30 minutes and 4 hours after exposure to α-particles in IMR-90 fibroblasts.</p> <p>Methods</p> <p>We used whole human genome microarrays and real time quantitative PCR to measure and validate gene expression. Microarray analysis was done using BRB-Array Tools; pathway and ontology analyses were done using Ingenuity Pathway Analysis and PANTHER, respectively. We studied signaling in irradiated and bystander cells using immunoblotting and semi-quantitative image analysis.</p> <p>Results</p> <p>Gene ontology suggested signal transduction and transcriptional regulation responding 30 minutes after treatment affected cell structure, motility and adhesion, and interleukin synthesis. We measured time-dependent expression of genes controlled by the NF-κB pathway; matrix metalloproteinases 1 and 3; <it/>chemokine ligands 2, 3 and 5 and <it/>interleukins 1β, 6 and 33. There was an increased response of this set of genes 30 minutes after treatment and another wave of induction at 4 hours. We investigated AKT-GSK3β signaling and found both AKT and GSK3β are hyper-phosphorylated 30 minutes after irradiation and this effect is maintained through 4 hours. In bystander cells, a similar response was seen with a delay of 30 minutes. We proposed a network model where the observed decrease in phosphorylation of β-catenin protein after GSK3β dependent inactivation can trigger target gene expression at later times after radiation exposure</p> <p>Conclusions</p> <p>These results are the first to show that the radiation induced bystander signal induces a widespread gene expression response at 30 minutes after treatment and these changes are accompanied by modification of signaling proteins in the PI3K-AKT-GSK3β pathway.</p

    Mitochondrial dysfunction resulting from loss of cytochrome c impairs radiation-induced bystander effect

    Get PDF
    Cytochrome c is a pivotal protein that resides in mitochondria as component of mitochondria respiration and apoptosis initiator. Using murine cells lacking cytochrome c, we showed here that cytochrome c-deficient cells had attenuated reactive oxygen species/nitric oxide and micronuclei induction to radiation-induced bystander signals, indicating cytochrome c is essential for the bystander effect

    Using Unsupervised Patterns to Extract Gene Regulation Relationships for Network Construction

    Get PDF
    BACKGROUND: The gene expression is usually described in the literature as a transcription factor X that regulates the target gene Y. Previously, some studies discovered gene regulations by using information from the biomedical literature and most of them require effort of human annotators to build the training dataset. Moreover, the large amount of textual knowledge recorded in the biomedical literature grows very rapidly, and the creation of manual patterns from literatures becomes more difficult. There is an increasing need to automate the process of establishing patterns. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we describe an unsupervised pattern generation method called AutoPat. It is a gene expression mining system that can generate unsupervised patterns automatically from a given set of seed patterns. The high scalability and low maintenance cost of the unsupervised patterns could help our system to extract gene expression from PubMed abstracts more precisely and effectively. CONCLUSIONS/SIGNIFICANCE: Experiments on several regulators show reasonable precision and recall rates which validate AutoPat's practical applicability. The conducted regulation networks could also be built precisely and effectively. The system in this study is available at http://ikmbio.csie.ncku.edu.tw/AutoPat/

    Evidence for bystander signalling between human trophoblast cells and human embryonic stem cells

    Get PDF
    Maternal exposure during pregnancy to toxins can occasionally lead to miscarriage and malformation. It is currently thought that toxins pass through the placental barrier, albeit bilayered in the first trimester, and damage the fetus directly, albeit at low concentration. Here we examined the responses of human embryonic stem (hES) cells in tissue culture to two metals at low concentration. We compared direct exposures with indirect exposures across a bi-layered model of the placenta cell barrier. Direct exposure caused increased DNA damage without apoptosis or a loss of cell number but with some evidence of altered differentiation. Indirect exposure caused increased DNA damage and apoptosis but without loss of pluripotency. This was not caused by metal ions passing through the barrier. Instead the hES cells responded to signalling molecules (including TNF-α) secreted by the barrier cells. This mechanism was dependent on connexin 43 mediated intercellular ‘bystander signalling’ both within and between the trophoblast barrier and the hES colonies. These results highlight key differences between direct and indirect exposure of hES cells across a trophoblast barrier to metal toxins. It offers a theoretical possibility that an indirectly mediated toxicity of hES cells might have biological relevance to fetal development

    Naturally Occurring Variants of Human Α9 Nicotinic Receptor Differentially Affect Bronchial Cell Proliferation and Transformation

    Get PDF
    Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR). BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compared the biologic effects of overexpression of full-length α9 N442 and S442 proteins, and the truncated α9 variant occurring due to a loss of the exon 4 sequence that causes frame shift and early termination of the translation. These as well as control vector were overexpressed in the BEP2D cells that were used in the assays of proliferation rate, spontaneous vs. tobacco nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced cellular transformation, and tumorigenicity in cell culture and mice. Overexpression of the S442 variant significantly increased cellular proliferation, and spontaneous and NNK-induced transformation. The N442 variant significantly decreased cellular transformation, without affecting proliferation rate. Overexpression of the truncated α9 significantly decreased proliferation and suppressed cellular transformation. These results suggested that α9 nAChR plays important roles in regulation of bronchial cell growth by endogenous acetylcholine and exogenous nicotine, and susceptibility to NNK-induced carcinogenic transformation. The biologic activities of α9 nAChR may be regulated at the splicing level, and genetic polymorphisms in CHRNA9 affecting protein levels, amino acid sequence and RNA splicing may influence the risk for lung cancer
    corecore